

Extraction of Callsigns

Table of Contents
Extraction of Callsigns ... 1

Table of Contents .. 1

Learning Objectives ... 1

Exercise at a glance ... 1

What is a Callsign? ... 1

Detailed Exercise Description .. 4

Exercise 4-0: Who is doing what in your team .. 4

Exercise 4-1: Read Utterance and extract callsigns ... 4

Exercise 4-2: Unit Tests ... 6

Evaluation criteria for Exercise 4-1 and 4-2 .. 6

Exercise 4-3: Consider “correction” .. 6

Evaluation criteria for Exercise 4-3 .. 6

Learning Objectives
- Using STL
- Programming in a team, you may work in teams up to 5

Exercise at a glance
 Extract all callsigns from given utterances
 Calculate your extraction rate
 Consider also the word “correction”

What is a Callsign?
Extract the callsign part from a given utterance, e.g.,

 "oscar echo india november kilo direct whisky whisky nine
eight five". The expected output would be “OEINK”.

 "good morning lufthansa one two bravo descend eight zero".
The expected output would be “DLH12B”.

 “gruess gott ryan_air seven seven delta kilo in radar
contact”. The expected output would be “RYR77DK”.

 “standby”: No callsign is in this utterance. The expected output would be
“NO_CALLSIGN”

 “gruess gott lupus one one zero expect ils approach three
four”. The expected output would be “AYY110”.

These are the easy examples, which will already cover 80% to 90% of the utterances, you will
get as test cases. More challenging is already

 “gruess gott austrian triple seven sierra identified climb
flight level two three zero”. The expected output would be “AUA777S”.

 “descending eight thousand feet direct dexon speed bird
twenty nine seventeen”. The expected output would be “BAW2917”.

 “speed bird twenty nine seventeen standby lufthansa four
double alfa after air france taxi via november november 8
to delta four eight one”. The expected output would be “BAW2917” and
“DLH4AA”. “air france” is not used as a callsign.

 The callsign is not always in the beginning: “climbing flight level two
three zero austrian triple seven sierra”.

You will see more and more “interesting”, i.e. challenging examples.

Here you find the data structures, which could be used for mapping from a letter to the name
in the NATO alphabet.
Attention: you will need the opposite map, which maps from NATO alphabet to the ASCII
character. You will also find this code segments in SVN in folder
..\AlleGruppen\VonJedemInSeineUmgebungZuKopieren\Aufgabe04\Hilfscode.

static const std::unordered_map<char, std::string> lettersToNato =
{
{ 'A', "alfa" }, // it is alfa, not alpha
{ 'B', "bravo" },
{ 'C', "charlie" },
{ 'D', "delta" }, // there is also an airline 'delta', with the three letter code DAL
{ 'E', "echo" },
{ 'F', "foxtrot" }, // also fox is said
{ 'G', "golf" },
{ 'H', "hotel" },
{ 'I', "india" },
{ 'J', "juliett" },
{ 'K', "kilo" },
{ 'L', "lima" },
{ 'M', "mike" },
{ 'N', "november" },
{ 'O', "oscar" },
{ 'P', "papa" },
{ 'Q', "quebec" },
{ 'R', "romeo" },
{ 'S', "sierra" },
{ 'T', "tango" },
{ 'U', "uniform" },
{ 'V', "victor" },
{ 'W', "whiskey" },
{ 'X', "x-ray" }, // not xray
{ 'Y', "yankee" },
{ 'Z', "zulu" } // not zoulou
};

The following code segments could also be helpful:

static const std::unordered_map<char, std::string> numbersToNato =
{
{ '1', "one" },
{ '2', "two" },
{ '3', "three" },
{ '4', "four" },
{ '5', "five" },
{ '6', "six" },
{ '7', "seven" },
{ '8', "eight" },
{ '9', "nine" },
{ '0', "zero" },
{ '.', "decimal" }
};

static const std::unordered_map<std::string, int> numbersToNatoMultipleDigits =
{
{ "ten", 10 },
{ "eleven", 11 },
{ "twelve", 12 },
{ "thirteen", 13 },
{ "fourteen", 14 },
{ "fifteen", 15 },
{ "sixteen", 16 },
{ "seventeen", 17 },
{ "eighteen", 18 },
{ "nineteen", 19 },

{ "twenty", 20 },
{ "thirty", 30 },
{ "fourty", 40 },
{ "fifty", 50 },
{ "sixty", 60 },
{ "seventy", 70 },
{ "eighty", 80 },
{ "ninety", 90 },

{ "hundred", 100 },
{ "thousand", 1000 }
};

In SVN in the file completeDesignators.json in folder
AlleGruppen/VonJedemInSeineUmgebungZuKopieren/10_EfficientExtraction/Hilfscode
you find a subset of the three letter airline designators1 DLH stands for hansa or
lufthansa, GTW for united states of america, DAL for delta. BAW for
speed_bird or speedbird or speed bird with a blank etc.

1 There are more than 7000 combinations, but we will use only some of them in our test data.
Combinations not provided here, are not used in our test data -- I hope so. You should find

Just for understanding your task: You find here a subset in simple JSON format in SVN, e.g.:
{
"ABP": ["b_air"],
"ACA": ["canada"],
"AEG": ["airest", "eastern", "east air", "east"],
"AFR": ["air_france", "france"],
"BER": ["air_berlin", "berlin"],

"DLH": ["lufthansa", "hansa"],
"GEC": ["lufthansa cargo"],
"LCI": ["lufthansa india"],
"LHT": ["lufthansa technik"],

"DAL": ["delta"],
"DAT": ["deltair", "delta air"],

"MHV": ["snowcap", "snow cap"],
"NLY": ["flyniki", "fly niki", "fly_niki"]
}

Detailed Exercise Description

Exercise 4-0: Who is doing what in your team
Send a short description, who will do what in your team, if you are working in a team. If you are
working alone this is not necessary.

If you are sending me this description until 2023-11-12 via email you have time for the whole
exercise until end of the month November otherwise until 2023-11-24.

Exercise 4-1: Read Utterance and extract callsigns
Implement a function ReadUtteranceCheckCallsign, which reads a file in the format
shown below and extracts from each utterance (word sequence) the callsign and compares,
whether the extracted callsign is equal to the expected callsign (which you analyse by reading
the utterance by yourself and set as desired value).

The following file with name NumbersWithCallsignsEx1.txt is an example:2

roughly 30 of them in the file “completeDesignatorsShort.json”. Later you will get an
additional file “completeDesignatorsShort.json” with a more complete list.
2 The file structure is always:

 Line 1: one-word file name, which always starts with “20*. The line ends with a colon “:”.
 Line 2: an utterance consisting of an arbitrary number of words, but at least one
 Line 3: Might contain the first word “Csgn” followed by a colon “:” and then an arbitrary number of

strings separated by white spaces might follow. All in the same line. The line starting with “Csgn”
might also be missing.

 Line 3, 4, … or Line 4, 5: The extracted commands. For you, only the callsign is interesting. Sometimes
there might be more than one callsign, but this is the exception. These lines contain more than one
word.

 And then it starts again with a one-word line with next file name.

2019-02-15__11-32-02-00:
 oscar echo india november kilo direct whisky whisky nine
eight five
 Csgn: DLH123 OEINK DLHABC
 OEINK DIRECT_TO WW985
2019-02-15__11-33-02-00:
 good morning lufthansa one two bravo descend eight zero
 DLH12B DESCEND 80 none
2019-02-15__11-34-02-00:
 gruess gott ryan_air seven seven delta kilo in radar contact
 RYR77DK INIT_RESPONSE
2019-02-15__11-35-02-00:
 standby
 Csgn: DLH123 OEINK DLHABC AFR257A
 NO_CALLSIGN NO_CONCEPT
2019-02-15__11-37-02-00:
 gruess gott lupus one one zero expect ils approach three four
 AYY110 EXPECT ILS 34
2019-02-15__11-38-02-00:
 gruess gott austrian seven seven seven sierra identified
climb flight level two three zero
 AUA777S INIT_RESPONSE
 AUA777S CLIMB 230 FL
2019-02-15__11-39-07-00:
speed bird twenty nine seventeen standby lufthansa four double
alfa after air france taxi via november november eight to
delta four eight one3
 BAW2917 CALL_YOU_BACK
 DLH4AA GIVE_WAY AFR none
 DLH4AA TAXI VIA N N8
 DLH4AA TAXI TO D481
2019-02-15__11-39-02-00:
 hi united states of america two fox one foxtrot identified
climb flight level two three zero
 AAL2F1F INIT_RESPONSE
 AAL2F1F CLIMB 230 FL

First the keyword sequence oscar echo india november kilo direct whisky
whisky nine eight five is read and the expected callsign OEINK is expected.
The function has at least three parameters:

 parameter 1 specifies the full filename of the file you want to read in from disk
 and parameter 2 is a boolean parameter. If set to true, the keyword sequence is

printed to cout, then the expected callsign is printed followed by the extracted
callsign. If the parameter is false, no output is printed to cout. If the function
detects a deviation between extracted and expected callsign it outputs after the
extracted callsign “####” and it returns false, otherwise true (i.e. if no #### is
output at all).

3 This is a long line split into multiple lines in this document. In the file it is just one line, which should make
extraction for you much easier.

 The third output parameter (new class to be implemented by you) counts the number
of read callsigns and also the number of correctly and wrongly extracted callsigns. 4 If
parameter 2 is true, also output these values to cout.

Exercise 4-2: Unit Tests
Write at least three tests for the function ReadUtteranceCheckCallsign. In one test it
should be tested, whether the expected output value true is returned and in one other test the
expected value should be false. Test 3 tests e.g., whether the third parameter contains the
correct and expected values. More tests are always better.

%%%
Evaluation criteria for Exercise 4-1 and 4-2

 Upload at least three screen dumps of your test code for the function
ReadUtteranceCheckCallsign with the filenames
ReadUtteranceCheckCallsignTest01.jpg, ReadUtteranceCheckCallsignTest02.jpg etc.

 Run the function ReadUtteranceCheckCallsign also on the file
NumbersWithCallsignsEx1.txt shown above.5 Call the function with boolean
parameter set to \ true. Make a screen dump of this screen output and upload it in file
NumbersWithCallsignsEx1.jpg in the image folder.

 After you have uploaded your code, you will get after the deadline a new test file
(currently not known to you). Run your function ReadUtteranceCheckCallsign (again
with boolean parameter set to true) on it and upload the screen dump to
callsignExtraction.jpg. It should also run on my computer by just changing the file.

Exercise 4-3: Consider “correction”
If the keyword sequence contains the word correction please also consider this, as described
by the examples below:

We expect the following in callsign correction:

 "oscar echo correction oscar delta india november kilo
direct whisky whisky nine eight five” --> ODINK

 "good morning lufthansa correction speed bird one two
bravo descend eight zero" // --> BAW12B

 “gruess gott ryan air correction lufthansa eight
correction lupus seven seven delta kilo in radar
contact” --> AYY77DK

 "gruess gott ryan air correction lufthansa correction i
call you back" --> NO_CALLSIGN, because the callsign is not clear.

Evaluation criteria for Exercise 4-3
 Create an input file with the above four examples and run your function

ReadUtteranceCheckCallsign on it with boolean parameter set to true. Upload the
resulting screen dump to file CallsignExtrWithCorrection.jpg and check
the results.

4 Attention. It could happen that you expect only one callsign, but you extract three different ones and vice
versa.
5 This file does not contain the tag “Csgn:” You find the file also in data folder of
“..\AlleGruppen\VonJedemInSeineUmgebungZuKopieren\Aufgabe04”.

 Furthermore, you will get an unknown file and we might have a competition between
me and the other teams and your team.

