

Extraction of Callsigns

Table of Contents
Extraction of Callsigns ... 1

Table of Contents .. 1

Learning Objectives ... 1

Exercise at a glance ... 1

What is a Callsign? ... 1

Detailed Exercise Description .. 4

Exercise 4-0: Who is doing what in your team .. 4

Exercise 4-1: Read Utterance and extract callsigns ... 5

And here is an example, with the keyword “Csgn“: .. 7

Exercise 4-2: Unit Tests ... 8

Evaluation criteria for Exercise 4-1 and 4-2 .. 10

Exercise 4-3: Consider “correction” .. 11

Evaluation criteria for Exercise 4-3 .. 11

This is the first part of the exercise to be done in November.

Learning Objectives
- Using STL
- Programming in a team, you may work in teams up to 5

Exercise at a glance
 Extract all callsigns from given utterances
 Calculate your extraction rate
 Consider also the word “correction”

A lot of code is mentioned here. You can download it from the SVN.

What is a Callsign?
Extract the callsign part from a given utterance, e.g.,

 "oscar echo india november kilo direct whisky whisky nine
eight five". The expected output/callsign would be “OEINK”.

 "good morning lufthansa one two bravo descend eight zero".
The expected output would be “DLH12B”.

 “gruess gott ryan_air seven seven delta kilo in radar
contact”. The expected output would be “RYR77DK”.

 “standby”: No callsign is in this utterance. The expected output would be
“NO_CALLSIGN”

 “gruess gott lupus one one zero expect ils approach three
four”. The expected output would be “AYY110”.

These are the easy examples, which will already cover 80% to 90% of the utterances, you will
get as test cases. More challenging is already

 “gruess gott austrian triple seven sierra identified climb
flight level two three zero”. The expected output would be “AUA777S”.
Here the callsign was not in the first words.

 “descending eight thousand feet direct dexon speed bird
twenty nine seventeen”. The expected output would be “BAW2917”.
The callsign is even at the end of the utterance.

 “speed bird twenty nine seventeen standby lufthansa four
double alfa after air france taxi via november november 8
to delta four eight one”. The expected output would be “BAW2917” and
“DLH4AA”. “air france” is not used as a callsign.

 The callsign is not always in the beginning: “climbing flight level two
three zero austrian triple seven sierra”.

You will see more and more “interesting”, i.e. challenging examples.

Here you find the data structures, which could be used for mapping from a letter to the name
in the NATO alphabet.
Attention: you will need the opposite map, which maps from NATO alphabet to the ASCII
character. You will also find this code segments in SVN in folder
..\AlleGruppen\VonJedemInSeineUmgebungZuKopieren\Aufgabe04\Hilfscode.
in File NATOAlphabet.cxx.

static const std::unordered_map<char, std::string> lettersToNato =
{
{ 'A', "alfa" }, // it is alfa, not alpha
{ 'B', "bravo" },
{ 'C', "charlie" },
{ 'D', "delta" }, // there is also an airline 'delta', with the three letter code DAL
{ 'E', "echo" },
{ 'F', "foxtrot" }, // also fox is said
{ 'G', "golf" },
{ 'H', "hotel" },
{ 'I', "india" },
{ 'J', "juliett" },
{ 'K', "kilo" },
{ 'L', "lima" },
{ 'M', "mike" },
{ 'N', "november" },
{ 'O', "oscar" },
{ 'P', "papa" },
{ 'Q', "quebec" },
{ 'R', "romeo" },
{ 'S', "sierra" },

{ 'T', "tango" },
{ 'U', "uniform" },
{ 'V', "victor" },
{ 'W', "whiskey" },
{ 'X', "x-ray" }, // not xray
{ 'Y', "yankee" },
{ 'Z', "zulu" } // not zoulou
};

The following code segments could also be helpful. It is in the same file:

static const std::unordered_map<char, std::string> numbersToNato =
{
{ '1', "one" },
{ '2', "two" },
{ '3', "three" },
{ '4', "four" },
{ '5', "five" },
{ '6', "six" },
{ '7', "seven" },
{ '8', "eight" },
{ '9', "nine" },
{ '0', "zero" },
{ '.', "decimal" }
};

static const std::unordered_map<std::string, int> numbersToNatoMultipleDigits =
{
{ "ten", 10 },
{ "eleven", 11 },
{ "twelve", 12 },
{ "thirteen", 13 },
{ "fourteen", 14 },
{ "fifteen", 15 },
{ "sixteen", 16 },
{ "seventeen", 17 },
{ "eighteen", 18 },
{ "nineteen", 19 },

{ "twenty", 20 },
{ "thirty", 30 },
{ "fourty", 40 },
{ "fifty", 50 },
{ "sixty", 60 },
{ "seventy", 70 },
{ "eighty", 80 },
{ "ninety", 90 },

{ "hundred", 100 },
{ "thousand", 1000 }
};

In SVN in the file completeDesignatorsShort.json in folder AlleGruppen\
VonJedemInSeineUmgebungZuKopieren\Aufgabe04\Data you find a subset of the three letter
airline designators1 DLH stands for hansa or lufthansa, GTW for united states
of america, DAL for delta. BAW for speed_bird or speedbird or speed bird
with a blank etc.

Just for understanding your task: You find here a subset in simple JSON format in SVN, e.g.:
{
"ABP": ["b_air"],
"ACA": ["canada"],
"AEG": ["airest", "eastern", "east air", "east"],
"AFR": ["air_france", "france"],
"BER": ["air_berlin", "berlin"],

"DLH": ["lufthansa", "hansa"],
"GEC": ["lufthansa cargo"],
"LCI": ["lufthansa india"],
"LHT": ["lufthansa technik"],

"DAL": ["delta"],
"DAT": ["deltair", "delta air"],

"MHV": ["snowcap", "snow cap"],
"NLY": ["flyniki", "fly niki", "fly_niki"]
}

Detailed Exercise Description

Exercise 4-0: Who is doing what in your team
Send a short description, who will do what in your team, if you are working in a team. If you are
working alone this is not necessary. It is currently enough to send a plan just for the part of the
exercise described in this file.

If you are sending me this description until 2024-11-23 via email you have time for the whole
exercise until 18-12-2024 otherwise until end of November.2

1 There are more than 7000 combinations, but we will use only some of them in our test data.
Combinations not provided here, are not used in our test data -- I hope so. You should find
roughly 30 of them in the file “completeDesignatorsShort.json”. More you find in
“completeDesignatorsLong.json”.
Internally (for my test and evaluation of your implementation) I will use a much long list, which you “never“
get, but your code should be able to read also this much longer file.
2 I hope it is clear. It is a must to send that list. You can change at any time, but you should have already now an
idea, what you want to do (and I can give then early feedback whether you are working in the right direction or
not).

Exercise 4-1: Read Utterance and extract callsigns
Implement a function ReadUtteranceCheckCallsign, which reads a file in the format
shown below and extracts from each utterance (each word sequence) the callsign and
compares, whether the extracted callsign is equal to the expected callsign (which is specified
in the last line(s)).

The following file with name UtterancesWithAnnotationsShort.txt is an
example:3, 4
2019-02-15__11-32-02-00:
 oscar echo india november kilo direct whisky whisky nine
eight five
 OEINK DIRECT_TO WW985
2019-02-15__11-33-02-00
 good morning lufthansa one two bravo descend eight zero
 DLH12B DESCEND 80 none
2019-02-15__11-34-02-00:
 gruess gott ryan_air seven seven delta kilo in radar contact
 RYR77DK INIT_RESPONSE
2019-02-15__11-35-02-00:
 standby
 NO_CALLSIGN CALL_YOU_BACK
2019-02-15__11-37-02-00:
 gruess gott lupus one one zero expect ils approach three four
 AYY110 EXPECT ILS 34
2019-02-15__11-38-02-00:
 gruess gott austrian seven seven seven sierra identified
climb flight level two three zero
 AUA777S CLIMB 230 FL
2019-02-15__11-39-07-00:
speed bird twenty nine seventeen standby lufthansa four double
alfa after air france taxi via november november eight to
delta four eight one
 BAW2917 CALL_YOU_BACK
 DLH4AA GIVE_WAY AFR none
 DLH4AA TAXI VIA N N8
 DLH4AA TAXI TO D481
2019-02-15__11-39-12-00:

3 The file structure is always:

 Line 1: one-word file name, which always starts with “20*. The line can end with a colon “:” or just
with a number.

 Line 2: an utterance consisting of an arbitrary number of words, in seldom cases the line could be
empty.

 Line 3 (is optional): Might contain the first word “Csgn” followed by a colon “:” and then an arbitrary
number of strings separated by white spaces might follow. All in the same line. The line starting with
“Csgn” might also be missing. These are the number of callsign, which are currently known (are in the
air). This key “Csgn” is not used in this example, see later examples.

 Line 3, 4, … or Line 4, 5: The extracted commands. For you, only the callsign is interesting. Sometimes
there might be more than one callsign, but this is the exception. These lines contain more than one
word.

 And then it starts again with a one-word line with next file name.
4 When you are working in a group/team, one team member could e.g. write the code to process these files.

 hi united states of america two fox one foxtrot identified
climb flight level two three zero
 AAL2F1F INIT_RESPONSE
 AAL2F1F CLIMB 230 FL

The function ReadUtteranceCheckCallsign has at least three parameters:

1. parameter 1 specifies the full filename of the file you want to read in from disk (this
could be e.g. the string "R:\VorlesungsUnterlagen\Betreuer\
Uebungen\CodeDerAufgabenLoesungen\Aufgabe04\Data\
UtterancesWithAnnotationsShort.txt"

2. and parameter 2 is a boolean parameter. If set to true,
o the one word filename,
o the keyword sequence and expected and
o extracted callsigns

are printed to cout.
If the function detects a deviation between extracted and expected callsign it
outputs after the extracted callsign the string “####”.

If the parameter is false, no output is printed to cout.
3. The third output parameter (new class Evaluation to be implemented by you) counts

the number of read callsigns and also the number of correctly and wrongly extracted
callsigns.5 If parameter 2 is true, also output these values to cout. If you extract
NO_CALLSIGN, but a callsign is expected, count this as a rejection, i.e. the class also
needs a rejection counter.6

The function returns true, when no error occurs, while reading and processing the file, e.g. the
file does not exist. The return value can also be true, if not all callsigns are correctly extracted.

A possible output, when second parameter is true could be:

The details of the output are not so important, but something should be output, which help me
to understand, that your code is doing the right things and helps you also to test and debug
your code.

5 Attention. It could happen that you expect only one callsign, but you extract three different ones and vice
versa.
6 The interface of Evaluation is shown below.

It should be already clear, that this is not a trivial function, which requires writing some tests.
Test first is a good idea. You are writing the test anyway, so do it early. Then you benefit
from it, see next exercise.

It should be also clear, that this function is not only reading the file, but also needs to call
another function (to be implemented by you) that performs the callsign extraction.

Later you will get some more files from me. Then you can easily evaluate the performance of
your extraction algorithm and especially see, where your function still fails.

Here you see an example file with an empty utterance (which does not make sense, but just
for your testing):

2019-02-15__11-32-02-00:

 Csgn: AUA774X BAW52CV
 NO_CALLSIGN NO_CONCEPT
2019-02-15__11-32-24-00:

 ABP61 INIT_RESPONSE
 ABP61 CLIMB 120 FL
2019-02-15__11-32-40-00:
 b_air six one praha radar radar contact climb flight level one two zero
 Csgn: ABP61
 ABP61 INIT_RESPONSE
 ABP61 CLIMB 120 FL
2019-02-15__11-33-40-00:
 roger
 Csgn: ABP61
 NO_CALLSIGN AFFIRM

And here is an example, with the keyword “Csgn“:
2019-02-15__11-22-40-00:
 speed bird five two charlie victor standby break break b_air six one praha
radar radar contact climb flight level one two zero
 Csgn: ABP61 BAW52CV
 BAW52CV STANDBY
 ABP61 INIT_RESPONSE
 ABP61 CLIMB 120 FL
2019-02-15__11-32-02-00:
 speed bird five two bravo victor praha radar radar contact climb flight
level one two zero
 Csgn: AUA774X BAW52CV
 BAW52CV INIT_RESPONSE
 BAW52CV CLIMB 120 FL
2019-02-15__11-32-24-00:
 scandinavian one seven six seven praha radar radar contact break break
speed bird five two bravo victor descend flight level one hundred

 SAS1767 INIT_RESPONSE
 BAW52CV DESCEND 100 FL
2019-02-15__11-33-40-00:
 roger
 Csgn: ABP61
 NO_CALLSIGN AFFIRM
2019-02-15__11-35-24-00:
 scandinavian one seven six seven praha radar radar contact
 Csgn: ABP61 SAS1768
 SAS1768 INIT_RESPONSE

The above example also shows (in yellow) that an utterance may contain more than one callsign.
Three callsign and more are very, very seldom.

Interface of class “Evaluation”. Please implement this interface. The private part you can change as
you need. You can also add more attributes and also more methods.

class Evaluation {
public:
 Evaluation() { Reset(); }

 // main function for checking the expected, against extracted callsignn
 void CheckCallsign(const std::set<std::string>& antwortSet,
 const std::vector<std::string>& extraktions,
 const std::set<std::string>& ar_callsignSetThisUtter,
 bool ab_output);
 void PrintStatistics(std::string astr_dateipfad) const;

 int GetTotal() const { return mi_total; }
 int GetWrongRecogn() const { return mi_wrongRecogn; }
 int GetCorrectRecogn() const { return mi_correctRecogn; }
 int GetRejectedRecogn() const { return mi_rejectedRecogn; }

private:
 void Reset();
 int mi_wrongRecogn;
 int mi_correctRecogn;
 int mi_rejectedRecogn;
 int mi_total;
};

In the next exercise you see an example of a test, which uses this interface.

Exercise 4-2: Unit Tests
Write enough tests for the function ReadUtteranceCheckCallsign. In one test it
should be tested, whether the expected output value true is returned and in one other test the
expected value should be false. Test 3 tests e.g., whether the third parameter contains the
correct and expected values. More tests are always better.

The following function shows a possible test:

bool ReadAllError()
{

 unique_ptr<ExtractionBase> p_extractor = make_unique <ExtractionHHe123>();
 ReadUtterAndGoldFromFile read(p_extractor.get());
 string filename = "..\\Data\\WordSeqPlusCmdsContext.txt";
 Evaluation eval;
 read.ReadUtteranceCheckCallsign(filename, g_outputToScreen, eval);

 EXPECT_EQ(0, eval.GetCorrectRecogn());
 EXPECT_EQ(4, eval.GetWrongRecogn());
 EXPECT_EQ(0, eval.GetRejectedRecogn());

 RETURN_TRUE_IF_NOT_GOOGLE_TEST;
}

ExtractionHHe123 is just a dummy strub class, which always return the callsign HHe123.
It is a derived class of ExtractionBase.
Use also this interface for your classes for callsign extraction, which you will need in the next
exercise (not described in this document).

class ExtractionHHe123 : public ExtractionBase
{
public:
 virtual ~ExtractionHHe123() {};
 virtual std::vector<std::string> extractCallsign(std::string phrase,
 const std::set<std::string>&) override
 {
 // a callsign, which is always wrong
 return { "HHe123" };
 }
};

The base class is just an interface class (in C++ called abstract class).
class ExtractionBase
{
public:
 virtual ~ExtractionBase() {};
 // Extraction all callsigns from phrase,
 // by considering the known callsigns in callsignSetThisUtter
 virtual std::vector<std::string> extractCallsign(std::string phrase,
 const std::set<std::string>& callsignSetThisUtter) = 0;
 virtual std::vector<std::string> extractCallsign(std::string phrase,
 const std::set<std::string>& callsignSetThisUtter, bool /* ab_pilot*/) {
 return extractCallsign(phrase, callsignSetThisUtter);}
};

The last bool parameter of the second method extractCallsign defines (with value true),
whether the pilot is speaking. If the second method is not specified in the derived classes, the
first method is called by called.
This bool value ab_pilot MIGHT be helpful for implementation of some heuristics, because
the callsign is mostly said by the air traffic controller (ATCo) in the first words, whereas in
pilot utterances the callsign is mostly said at the end of the utterance (except for initial calls,
i.e. the first conversation between ATCo and pilot initiated by the pilot).

Your later implementation of the abstract class, will also need to read the file with the three
letter codes AFR, DLH etc. You find a first example in
completeDesignatorsLonger.json.

In the file googleTestEmulation.h you find a definition of the makros EXPECT_EQ and
RETURN_TRUE_IF_NOT_GOOGLE_TEST. This enables you to use google-tests without
adding the whole implementation of google-tests to your SVN.7

#define EXPECT_EQ(r, e) \
 if ((r) != (e)) {\
 std::cerr << "Test failed for: " << #r << "==" << #e << std::endl; \
 return false; \
 }
#define RETURN_TRUE_IF_NOT_GOOGLE_TEST {return true;}

You need a class, which is extracting the callsigns.

%%%
Evaluation criteria for Exercise 4-1 and 4-2

 Upload at least three screen dumps of your test code for the function
ReadUtteranceCheckCallsign with the filenames
ReadUtteranceCheckCallsignTest01.jpg, ReadUtteranceCheckCallsignTest02.jpg etc.

 Run the function ReadUtteranceCheckCallsign also on the file
UtterancesWithAnnotationsShort.txt shown above.8 Call the function with
boolean parameter set to \ true. Make a screen dump of this screen output and upload it
in file UtterancesWithAnnotationsShort.jpg in the image folder.

 After you have uploaded your code, you will get after the deadline a new test file
(currently not known to you). Run your function ReadUtteranceCheckCallsign (again
with boolean parameter set to true) on it and upload the screen dump to
callsignExtraction.jpg. It should also run on my computer by just changing the file.

7 I am also using google test, but do not rely on that. You need to define the preprocessor directive
WITHOUT_4D_CARMA_ENVIRONMENT, when callsing the compiler. For the command line or for CMake-files
you add -DWITHOUT_4D_CARMA_ENVIRONMENT
For Visual Studio you are changing the settings of your project:

8 This file does not contain the tag “Csgn:” You find the file also in data folder of
“..\AlleGruppen\VonJedemInSeineUmgebungZuKopieren\Aufgabe04”. The same file, but
now with tag “Csgn” you find in file “NumbersWithCallsignsEx2WitExpected.txt”.

Exercise 4-3: Consider “correction”
If the keyword sequence contains the word correction please also consider this, as described
by the examples below:

We expect the following callsign(s) when considering correction:

 "oscar echo correction oscar delta india november kilo
direct whisky whisky nine eight five” --> ODINK

 "good morning lufthansa correction speed bird one two
bravo descend eight zero" // --> BAW12B

 “gruess gott ryan air correction lufthansa eight
correction lupus seven seven delta kilo in radar
contact” --> AYY77DK

 "gruess gott ryan air correction lufthansa correction i
call you back" --> NO_CALLSIGN, because the callsign is not clear.

Evaluation criteria for Exercise 4-3
 Create an input file with the above four examples and run your function

ReadUtteranceCheckCallsign on it with boolean parameter set to true. Upload the
resulting screen dump to file CallsignExtrWithCorrection.jpg and check
the results.

 Furthermore, you will get an unknown file and we might have a competition between
me and the other teams and your team.

